Generic Regularity of Conservative Solutions to Camassa-Holm Type Equations
نویسندگان
چکیده
This paper mainly proves the generic properties of the Camassa-Holm equation and the two-component Camassa-Holm equation by Thom’s transversality Lemma. We reveal their differences in generic regularity and singular behavior.
منابع مشابه
On Time Fractional Modifed Camassa-Holm and Degasperis-Procesi Equations by Using the Haar Wavelet Iteration Method
The Haar wavelet collocation with iteration technique is applied for solving a class of time-fractional physical equations. The approximate solutions obtained by two dimensional Haar wavelet with iteration technique are compared with those obtained by analytical methods such as Adomian decomposition method (ADM) and variational iteration method (VIM). The results show that the present scheme is...
متن کاملOn Global Finite Energy Solutions of the Camassa-Holm Equation
We consider the Camassa-Holm equation with data in the energy norm H 1(R1). Global solutions are constructed by the small viscosity method for the frequency localized equations. The solutions are classical, unique and energy conservative. For finite band data, we show that global solutions for CH exist, satisfy the equation pointwise in time and satisfy the energy conservation law. We show that...
متن کاملSmoothness of the flow map for low-regularity solutions of the Camassa-Holm equations
It was recently proven by De Lellis, Kappeler, and Topalov in [17] that the periodic Cauchy problem for the Camassa-Holm equations is locally well-posed in the space Lip(T) endowed with the topology of H(T). We prove here that the Lagrangian flow of these solutions are analytic with respect to time and smooth with respect to the initial data. These results can be adapted to the higher-order Cam...
متن کاملAn isospectral problem for global conservative multi-peakon solutions of the Camassa–Holm equation
We introduce a generalized isospectral problem for global conservative multi-peakon solutions of the Camassa–Holm equation. Utilizing the solution of the indefinite moment problem given by M. G. Krein and H. Langer, we show that the conservative Camassa–Holm equation is integrable by the inverse spectral transform in the multi-peakon case.
متن کاملPeriodic Conservative Solutions for the Two-component Camassa–holm System
We construct a global continuous semigroup of weak periodic conservative solutions to the two-component Camassa–Holm system, ut − utxx + κux + 3uux − 2uxuxx − uuxxx + ηρρx = 0 and ρt + (uρ)x = 0, for initial data (u, ρ)|t=0 in H1 per ×Lper. It is necessary to augment the system with an associated energy to identify the conservative solution. We study the stability of these periodic solutions by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Math. Analysis
دوره 49 شماره
صفحات -
تاریخ انتشار 2017